陈建,男,1988年生,现任化学化工学院制药工程系教师,长期从事适合临床转化应用的抗肿瘤药物载体、药物可控释放、单核苷酸多态性(SNP)及基因分析检测的研究工作。研究内容涵盖表面化学修饰、生物纳米材料组装、细胞生物学及活体成像技术、核酸分子探针设计与组装等领域,致力于实现创新的药物载体与治疗分析手段的研发。
主要研究方向包括:
刺激响应型敏感键的设计与合成:探索新型刺激响应材料,针对肿瘤微环境或外部刺激实现精准控制药物释放。
生物纳米材料的组装与功能化:开发高效、靶向性强的纳米载体,通过表面修饰提升其生物相容性及治疗效果。
SNP特异性识别及信号放大与转化:在单核苷酸多态性(SNP)检测领域,研究基于SNP的精准诊断方法,开发高灵敏度的基因检测平台,通过信号识别与放大技术提高检测准确性与灵敏度,助力个性化医疗与精准治疗。通过设计和合成具特异性识别功能的核酸分子探针,结合生物纳米材料,实现了SNP识别的高效性与高选择性,为基因分析和个性化医疗提供新的解决方案。
研究成果已在国内外知名学术期刊上发表,包括《Sensors and Actuators B: Chemical》《Chemistry—A European Journal》《Nanotechnology》《Materials Science and Engineering: C》《Colloids and Surfaces B: Biointerfaces》《Electrochimica Acta》等。参与了两项国家自然科学基金面上项目:“刺激-响应性分子印迹复合微球的组装及其可控吸附与释放性能研究”(NO. 21276283),“磁性埃洛石纳米管聚合体系的组装及对外循环肿瘤细胞的吸附与分离”(NO. 21576295)。此外,主持并参与多项企业横向合作项目,推动了科研成果的应用转化。
[1] 湖南省自然科学基金-面上项目,双苯硼酸型交联胰岛素纳米水凝胶的构建及依据血糖变化按需释放研究(No. 2025JJ50087),5万元,2025.01-2028.12
[2] 企业横向,用于PIV实验的高分散性PAMAM微球生产工艺探究及产品制备(No. D124W9),9万元,2024
[3] 企业横向,用于PIV成像的纳米微球颗粒产品制备(No. D12482),4万元,2024
[4] 企业横向,Cy5修饰的荧光微球及羧基PS微球制备工艺开发及产品定制(No. D123X1),1万元,2023
[5] 企业横向,二硝基苯酚标记的二抗生产工艺探索及产品制备(No. D123D0),8万元,2023
[6] 湖南省自然科学基金-青年项目,桥联β-环糊精刺激-响应型药物载体的组装及医学转化应用(No. 2020JJ5156),5万元,2020.01-2022.12
[7] 湖南省教育厅-一般项目,还原响应型白蛋白肿瘤药物载体的构建及医(No. 19C0774),1万元,2020.01-2022.12
[8] 湖南省教育厅教改项目,现代信息技术条件下制药工程专业实验虚拟仿真实践教学平台建设与实践路径探究(No. 202401000891),1.5万元,2024.01-2027.12
[9] 大学生创新训练项目-国家级重点,酸敏感型桥联β-CD纳米水凝胶—抗肿瘤药物载体(No. S202310534001),3万元,2023.01-023.12
[1] Huang, T.; Zhang, Y.; Yang, F.; Weng, L.; Zhang, D.; Chen, J.*; Feng, X.*; Ye, J.* A competitive conversion strategy for ultralow-abundance single nucleotide polymorphisms integrating with enzyme-free biosensor. Sensors and Actuators B: Chemical 2025, 429, 137327, DOI: 10.1016/j.snb.2025.137327.
[2] Tan, X.; Liu, Z.; Ouyang, C.; Deng, M.; Xiao, J.; Xiao, S.; Huang, T.; Yu, S.; Chen, H.; Chu, H.; Chen, J.* Enhancing Tumor Cell Affinity and Inhibiting Growth With Albumin‐Coated Crosslinked Chitosan Nanoparticle Micelles. Journal of Applied Polymer Science 2025, DOI: 10.1002/app.56751.
[3] Ouyang, C.; Deng, M.; Tan, X.; Liu, Z.; Huang, T.; Yu, S.; Ge, Z.; Zhang, Y.; Ding, Y.; Chen, H.; Chu, H.; Chen, J.* Tailored design of NHS–SS–NHS cross-linked chitosan nano-hydrogels for enhanced anti-tumor efficacy by GSH-responsive drug release. Biomedical Materials 2024, 19 (4), 045015, DOI: 10.1088/1748-605X/ad4e86.
[4] Wang, L.; Bu, S.; Xu, S.; Huang, T.; Yang, F.; Tan, Q.; Deng, M.; Xie, W.; Cai, B.; Chen, J.* Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one. Microchimica Acta 2024, 191 (6), DOI: 10.1007/s00604-024-06366-5.
[5] Zhang, Y.; Chen, Y.; Luo, M.; Wang, L.; Chen, J.; Huang, T.; Bu, S.; Xu, S.; Weng, L.; Li, S.; Zhang, D. An enzyme-free fluorescence sensing platform based on multiplex toehold-mediated strand displacement for point-of-care testing of single nucleotide polymorphisms. Sensors and Actuators B: Chemical 2024, 419, 136386, DOI: 10.1016/j.snb.2024.136386.
[6] Zhang, Y.; Xu, S.; Luo, M.; Chen, J.; Wang, L.; Yang, F.; Ye, J.; Liu, J.; He, B.; Weng, L.; Li, S.; Zhang, D. Hairpin-Empowered Invasive Reaction Combined with Catalytic Hairpin Assembly Cascade Amplification for the Specific Detection of Single-Nucleotide Polymorphisms. Analytical Chemistry 2024, 96 (25), 10283-10293, DOI: 10.1021/acs.analchem.4c01049.
[7] Zhang, Y.; Wang, L.; Ye, J.; Chen, J.; Xu, S.; Bu, S.; Deng, M.; Bian, L.; Zhao, X.; Zhang, C.; Weng, L.; Zhang, D. Rationally Designed Dual Base Pair Mismatch Enables Toehold-Mediated Strand Displacement to Efficiently Recognize Single-Nucleotide Polymorphism without Enzymes. Analytical Chemistry 2023, 96 (1), 554-563, DOI: 10.1021/acs.analchem.3c04778.
[8] Zhang, Y.; Xu, S.; Chen, J.; Wang, L.; Bian, L.; ye, J.; Weng, L.; Zhao, X.; Lin, C.-T.; Li, S.; Zhang, D. A biosensor using semi-DNA walker and CHA -FRET loop for ultrasensitive detection of single nucleotide polymorphism. Sensors and Actuators B: Chemical 2024, 400, 134908, DOI: 10.1016/j.snb.2023.134908.
[9] Hu, Y.;Chen, J.*; Hu, W.* Selective Cellular Uptake and Druggability Efficacy through Functionalized Chitosan-Conjugated Polyamidoamine (PAMAM) Dendrimers. Sensors 2024, 24 (15), 4853, DOI: 10.3390/s24154853.
[10] Zhang, Y.; Huang, T.; Lv, W.; Yang, K.; Ouyang, C.; Deng, M.; Yi, R.; Chu, H.; Chen, J.* Controlled growth of titanium dioxide nanotubes for doxorubicin loading and studies of in vitro antitumor activity. Frontiers in Bioengineering and Biotechnology 2023, 11, DOI: 10.3389/fbioe.2023.1201320.
[11] Lv, W.; Yang, K.; Yu, J.; Wu, Y.; Zhang, M.; Liu, Z.; Wang, X.; Zhou, J.; Ma, H.; Yi, R.; Chu, H.; Chen, J.* A generalizable strategy for crosslinkable albumin-based hydrogels and application as potential anti-tumor nanoplatform. Journal of Biomaterials Applications 2023, 37 (10), 1813-1822, DOI: 10.1177/08853282231166489.
[12] Yi, R.; Lv, W.; Zheng, S.; Zhang, N.; Zhang, Y.; Yang, K.; Huang, T.; Yang, Y.; Chu, H.; Chen, J.* IFN-γ/Doxorubicin Complex Nanoparticles for Enhancing Therapy in the Context of Human Ovarian Carcinoma. Frontiers in Materials 2022, 9, DOI: 10.3389/fmats.2022.944930.
[13] Deng, M.; Ouyang, C.; Yang, K.; Lv, W.; Huang, T.; Li, X.; Zhou, M.; Wu, H.; Xie, M.; Shi, P.; Gao, K.; Yi, R.; Peng, W.; Chu, H.; Chen, J.* An acid-labile bridged β-CD-based nano-hydrogel with superior anti-tumor drug delivery and release capacity. Journal of Drug Delivery Science and Technology 2022, 78, 103953, DOI: 10.1016/j.jddst.2022.103953.
[14] Chen, J.1; Liu, H.; Li, X.; Li, J.; Tang, R.; Deng, Z.; Yang, Y.; Zhong, S. Dually acid- and GSH-triggered bis(β-cyclodextrin) as drugs delivery nanoplatform for effective anticancer monotherapy. Nanotechnology 2021, 32 (14), 145714, DOI: 10.1088/1361-6528/abd7b1.
[15] Peng, W.1; Chen, J.1; Liu, H.; Li, X.; Deng, Z.; Yuan, J.; Peng, Y.; Yang, Y.; Zhong, S. An improved synthesis of the 5-HT1A receptor agonist Eptapirone free base. Chemical Papers 2019, 73 (6), 1321-1331, DOI: 10.1007/s11696-019-00685-1.
[16] Chen, J.1; Li, X.; Li, J.; Li, J.; Huang, L.; Ren, T.; Yang, X.; Zhong, S. Assembling of stimuli-responsive tumor targeting polypyrrole nanotubes drug carrier system for controlled release. Materials Science and Engineering: C 2018, 89, 316-327, DOI: 10.1016/j.msec.2018.04.031.
[17] Chen, J.1; Li, X.; Sun, Y.; Hu, Y.; Peng, Y.; Li, Y.; Yin, G.; Liu, H.; Xu, J.; Zhong, S. Synthesis of Size‐Tunable Hollow Polypyrrole Nanostructures and Their Assembly into Folate‐Targeting and pH‐Responsive Anticancer Drug‐Delivery Agents. Chemistry – A European Journal 2017, 23 (68), 17279-17289, DOI: 10.1002/chem.201702945.
[18] Hu, Y.1; Chen, J.1; Li, X.; Sun, Y.; Huang, S.; Li, Y.; Liu, H.; Xu, J.; Zhong, S. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies. Nanotechnology 2017, 28 (37), 375101, DOI: 10.1088/1361-6528/aa8393.
[19] Chen, J.1; Kang, Y.; Li, C.; Chen, H.; Sun, L.; Wang, Y.; Zhong, S. A Pt/TiO2Nanotube Array Electrode for Glucose Detection and Its Photoelectrocatalysis Self-Cleaning Ability. Journal of The Electrochemical Society 2016, 164 (2), B66-B73, DOI: 10.1149/2.0921702jes.
[20] Wang, Y.; Chen, J.; Zhou, C.; Zhou, L.; Kong, Y.; Long, H.; Zhong, S. A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode. Electrochimica Acta 2014, 115, 269-276, DOI: 10.1016/j.electacta.2013.09.173.
[21] 陈建; 楚会; 刘立华; 赵云辉; 岳明. 制药工程本科生就业创业与升学去向调查及专业办学改进措施分析. 现代教育论坛 2024, 11, 133-135.
[22] 楚会; 陈建; 赵云辉; 陈核章; 刘雄. 信息技术时代制药工程专业实验虚拟真平台的建设与教育教学实践. 公关世界 2024, 6, 75-76.
[1] 陈建;楚会;吕婉婉;余静雯;张梦迪;黄拓;杨凯;吴移清;刘子川;王熙璇;周佳慧. 一种粒径可控及可控降解的酸敏型交联环糊精纳米水凝胶药物递送系统的制备方法. 专利号:ZL 2022 1 0680096.5.
药物载体、药物可控释放、SNP分析检测