王桃

  • 性 别:
  • 职称:副教授
  • 学 历:博士研究生
  • 学院:数学与计算科学学院
  • 系部所:数学与应用数学系
  • 执教层次:硕士生导师
  • 电话:
  • 电子邮箱:wt_math@163.com

基本情况

王桃,女,汉族,山东菏泽人,博士,校聘副教授,湖南科技大学数学与统计学院教师。

学习经历

1、2007年09月~2011年06月,聊城大学数学与应用数学学士

2、2011年09月~2013年06月,湖南大学应用数学硕士 

3、2013年09月~2016年11月,中南大学应用数学士博士 

工作经历

2016年12月~2021年12月,湖南科技大学数学与统计学院讲师;

2022年1月~迄今,湖南科技大学数学与统计学院副教授

承担课程

高等数学、常微分方程、数学物理方程、解析几何、临界点理论、线性算子谱理论等

主持课题

(1)国家自然科学基金,12001188,扰动型Choquard方程解的存在性及其定性性质研究,2021/12-2023/12,已结题,主持;

(2)湖南省自然科学基金面上项目,2022JJ30235,非局部Choquard方程正基态解和变号解的性态研究,2022/01-2024/12,已结题,主持;

(3)湖南省自然科学基金青年项目,2018JJ3136,非局部Choquard方程解的存在性及其性态研究,2018/01-2020/12,已结题,主持;


代表性论文


[1]Tao Wang*, Taishan Yi. Symmetry of separable functions and its applications to Choquard type equations. Calculus of Variations and Partial Differential Equations, 59(1): 1-23 (2020). (SCI)

   [2]Hui Guo, Tao Wang*,  Taishan Yi. Uniqueness, symmetry and convergence of positive groundstate solutions of the Choquard type equation on a ball.  Journal of Differential Equations,  368:229-246(2023). (SCI)

[3]Tao Wang, Yanling Yang, Hui Guo*. Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term. Advances in Nonlinear Analysis, 12(1): 20220323, pp.23. (2023).(SCI)

[4]Tao Wang, Yanling Yang, Hui Guo*. Multiple nodal solutions of the Kirchhoff type problem with a cubic term. Advances in Nonlinear Analysis, 11(1): 1030-1047 (2022). (SCI)

[5]Tao Wang, Jing Lai, Hui Guo*. Existence of nodal solutions with arbitrary number of nodes for Kirchhoff type equations. Bulletin of the Malaysian Mathematical Sciences Society, 47 (166):1-26 (2024). (SCI)

[6]Tao Wang*, Jing Lai, Hui Guo. Multiple nodal solutions for Choquard type equations with an asymptotically linear term. Applicable Analysis, 104(17) :3303-3308 (2025).(SCI)

[7]Tao Wang*, Hui Guo. Existence and nonexistence of nodal solutions for Choquard type equations with perturbation. Journal of Mathematical Analysis and Applications, 480 (2) 123438, pp.20 (2019). (SCI)

[8]Tao Wang*, Taishan Yi. Uniqueness of positive solutions of the Choquard type equations. Applicable Analysis, 96(3): 409-417 (2017). (SCI)

[9]Na Liu, Tao Wang*. Infinitely many nodal solutions for a modified Kirchhoff type equation. Complex Variables and Elliptic Equations, 69 (10): 1739-1762 (2024). (SCI)

[10]Hui Guo, Ronghua Tang, Tao Wang*. Nodal solutions for the Schr¨odinger-Poisson system with an asymptotically cubic term. Mathematical Methods in the Applied Sciences, 45(16): 9696-9718 (2022). (SCI)

[11]Hui Guo, Ronghua Tang, Tao Wang*. Infinitely many nodal solutions with a prescribed number of nodes for the Kirchhoff type equations. Journal of Mathematical Analysis and Applications, 505(2):125519 (2022). (SCI)

[12]Tao Wang*, Hui Guo. Multiple nodal solutions of quadratic Choquard equations with perturbation. Complex Variable and Elliptic equations, 66(9): 1565-1579 (2021). (SCI)

[13]Yanling Yang, Tao Wang, Hui Guo*. Existence of sign-changing solutions for a gauged nonlinear Schrödinger equation with a quintic term. Journal of Mathematical Analysis and Applications, 520(1):126877, pp. 22 (2023). (SCI)

[14]Hui Guo*, Tao Wang. Infinitely many solutions for the nonlinear Schrodinger-Poisson system with broken symmetry. Advances Nonlinear Studies, 21(3):579-592 (2021). (SCI)

[15] Hui Guo, Tao Wang*. A multiplicity result for a non-local critical problem. Taiwanese Journal of Mathematics, 23(6): 1389-1421 (2020). (SCI)

[16]Tao Wang*. Existence of positive ground state solution for Choquard type equations. Mediterranean Journal of Mathematics, 14(1): 1-15 (2017). (SCI)

[17]Meiqi Bao, Hui Guo*, Tao Wang. Multi‐bumps solutions for the nonlinear Schrödinger equation under a slowing decaying potential. Mathematical Methods in the Applied Sciences, 47(6), 4430-4448 (2023). (SCI)

[18]Boling Tang, Hui Guo*, Tao Wang. Positive multi-bump solutions for the Schrödinger equation with slow decaying competing potentials. Journal of Mathematical Analysis and Applications, 543(2), 128904, pp.15 (2025). (SCI)

[19]Hui Guo, Boling Tang, Tao Wang*. Infinitely many positive nonradial solutions for the Kirchhoff equation. Mathematical Methods in the Applied Sciences, 48(6), 6830–6843 (2025). (SCI)

    [20]Tao Wang*. Existence and nonexistence of nontrivial solutions for Choquard type equations. Electronic Journal of Differential Equations, 2016 (3): 1-17 (2016). (SCI)

    [21]Tao Wang*. Existence of positive ground state solution for Choquard type equations. Mediterranean Journal of Mathematics, 14(1): 1-15 (2017). (SCI)

    [22]Tao Wang*. Ground state solutions for Choquard type equations with a singular potential. Electronic Journal of Differential Equations, 2017 (52) :1-14 (2017). (SCI)

    [23]Tao Wang, Hui Guo*. Infinitely many solutions for nonhomogeneous Choquard equations. Electronic Journal of Qualitative Theory of Differential Equations, 2019 (24):1-10 (2019). (SCI)

    [24]Tao Wang*. Asymptotic analysis of multiple solutions for perturbed Choquard equations. Indian Journal of Pure and Applied Mathematics, 51(1): 135-142 (2020). (SCI)

    [25]Tao Wang*. Global dynamics of a nonlocal delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 13(6): 2475-2492 (2014). (SCI)}

 


研究方向

1、偏微分方程

2、动力系统